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6.1. INTRODUCTION

The early stages of understanding and modeling of the 
ENSO phenomenon were marked by the seminal papers 
of Bjerknes (1969), Wyrtki (1985), and Cane and Zebiak 
(1985). These three visionary studies advanced a clear 
 hypothesis that casts ENSO as a phenomenon originating 

from an oscillatory coupled ocean‐atmosphere instability. 
First, Bjerknes (1969) hypothesized that ENSO SST 
anomalies (SSTAs) can grow via reorganizing of the 
equatorial Pacific trade winds and altering of the ocean 
mixed‐layer heat budget through horizontal currents and 
upwelling. Then, Wyrtki (1985) noted that in order for a 
phase transition to occur and for ENSO to be cyclic, a 
redistribution of heat content driven by the trade winds is 
required, namely, a slow recharge of warm water in the 
western Pacific before the onset of El Niño and a dis-
charge after its peak. Meanwhile, Cane and Zebiak (1985) 
built the first dynamical ENSO model to successfully test 
the above hypotheses. While these hypotheses for ENSO 
growth and its phase transitions were based on very 
limited data, and the Cane‐Zebiak model is of modest 
complexity, they set the stage for the advancement of 
ENSO theory, modeling, and prediction for years to 
come.

Decades’ worth of research studies since then viewed 
ENSO as a coupled ocean‐atmosphere mode (i.e., a spa-
tially and temporally coherent pattern of covariability in 
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oceanic and atmospheric variables that arises from their 
dynamical coupling) that can be described on the basis of 
linear instability theory using relatively simple coupled 
models that eventually boil down to the delayed and 
recharge oscillator paradigms (e.g., Cane & Zebiak, 1985; 
Gill, 1985; Hirst, 1986; Suarez & Schopf, 1988; Battisti & 
Hirst, 1989; Philander, 1990; Neelin, 1990; Jin & Neelin, 
1993a, 1993b; Neelin & Jin, 1993; Neelin et al., 1994; Jin, 
1997a, 1997b; Neelin et  al., 1998; Wang et  al., 1999). 
ENSO behaviors observed in nature or simulated in var-
ious coupled models were viewed qualitatively as the 
result of a sensitive dependence of the leading coupled 
modes to variations in the climate background state or in 
physical parameters related to the ocean‐atmosphere 
coupling (e.g., Philander et al., 1984; Jin & Neelin, 1993a; 
An & Jin, 2000; Fedorov & Philander, 2000, 2001; 
Bejarano, 2006; Bejarano & Jin, 2008; Xie & Jin, 2018; 
Timmermann et  al., 2018). The oscillatory nature of 
ENSO has been debated (Kessler, 2002; Philander & 
Fedorov, 2003; chapter  7 in this book), as it is being 
obscured by noise, nonlinearity, asymmetry, and abun-
dant multiscale interactions. However, the largely linear 
view of ENSO described above has set the foundation for 
the understanding of fundamental ENSO dynamics. We 
will thus briefly review the progress that has been made 
on ENSO linear instability theory in section 6.2.

Adopting the principles of linear instability theory, a 
class of highly simplified conceptual models was developed 
since the 1980s, including the delayed oscillator (Suarez & 
Schopf, 1988; Battisti & Hirst, 1989), wave oscillator (Cane 
et  al., 1990; Jin, 1997b), recharge oscillator (Jin, 1996, 
1997a, 1997b), and advective‐reflective oscillator (Picaut 
et al., 1997). Despite their simplifications and their limita-
tions in explaining the observed ENSO spatial pattern 
diversity and temporal complexity, most of these 
conceptual models are based on solid theoretical founda-
tions and may be consolidated into a generalized recharge 
oscillator (RO) framework (Jin & An, 1999). This RO 
framework can be used to formulate a set of simple, approx-
imate, but systematic measures for ENSO instability, 
namely, the Bjerknes and Wyrtki indices for ENSO linear 
growth rate and periodicity, respectively (Jin et al., 2006; 
Lu et al., 2018). This quantitative assessment of the ENSO 
instability indices using observational data and outputs 
from comprehensive coupled general circulation models 
(CGCMs) make the RO conceptual model framework a 
useful tool, particularly for connecting ENSO theory to 
observed and modeled ENSO behaviors under various 
background climate conditions. In section 6.3, we will dis-
cuss these simple conceptual models, their consolidation 
and generalization, and the formulation of the ENSO 
instability index, as well as its applications and limitations.

The role of seasonal modulation and stochastic and 
external forcing on ENSO dynamics and variability will 

be discussed in section  6.4, using linear and nonlinear 
versions of the conceptual models and the ENSO insta-
bility index. This chapter will end with a brief  discussion 
of its connections to previous and following chapters and 
an outlook on future research and the role of conceptual 
models in a hierarchical approach to improve our under-
standing of ENSO dynamics in past, present, and future 
climates.

6.2. COUPLED LINEAR INSTABILITY

The observed variability of the coupled climate system 
and its underlying physical processes can be investigated 
via a study of the stability of a simplified linearized rep-
resentation of the coupled climate system in the 
mathematical framework of dynamical systems. Similar 
to the role that baroclinic instability plays in the 
development of synoptic weather systems, coupled 
ocean‐atmosphere instability is important for generating 
interannual variability in the tropical climate system. The 
frontal theory for cyclones by Bjerknes and Solberg 
(1922) and the coupled ocean-atmosphere positive 
feedback hypothesis for ENSO by Bjerknes (1969) 
foresaw the role of these two fundamental instabilities for 
Earth’s dominant weather and climate systems. Advances 
in the understanding of tropical atmospheric waves and 
circulation (e.g., Matsuno, 1966; Webster, 1973; Gill, 
1980; Zebiak, 1982; Lindzen & Nigam, 1987) and in 
parallel of tropical ocean dynamics (Moore, 1968; Cane 
& Sarachik, 1977, 1979, 1981; Cane, 1984) led to the inge-
nious formulation of the Cane‐Zebiak (CZ) model, which 
was the first dynamical model that realistically simulated 
and predicted ENSO (Cane & Zebiak, 1985; Cane et al., 
1986; Zebiak & Cane, 1987). Since then, CZ‐type frame-
works have become well‐utilized tools in the advance-
ment of ocean‐atmosphere instability theory for ENSO 
(Gill, 1985; Hirst, 1986; Neelin, 1990; Jin et al., 1994; Jin, 
1997a, 1997b; An & Jin, 2000; Fedorov & Philander, 
2000, 2001; Bejarano & Jin, 2008; Xie & Jin, 2018; 
Timmermann et al., 2018).

6.2.1. Brief Description of the Cane‐Zebiak Model

The CZ model is an anomaly model with a prescribed 
annually varying climate mean state (Figure  6.1a) and 
consists of simple atmospheric and oceanic components 
that can be derived from first principles with reasonable 
simplifications. As illustrated schematically in Figure 6.1b, 
it comprises a simple quasi‐linear Gill-Matsuno atmo-
spheric component (Gill, 1980; Zebiak, 1982; Zebiak & 
Cane, 1987; also see the appendix to this chapter) that 
simulates the tropical wind response to ENSO‐associated 
SST anomalies. Its oceanic dynamical component is a 
1.5‐layer linear reduced gravity model that describes the 
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upper‐layer current and thermocline depth anomalies in 
response to wind anomalies. Within this upper layer 
ocean there is an embedded mixed layer with a fixed depth 
and an underlying subsurface layer with a prescribed 
mean depth. This approximation in representing the 
vertical structure of ocean dynamics allows the CZ oceanic 
model to simulate anomalous horizonal and vertical 
velocities in the mixed layer and at the mixed‐layer base, 
respectively. By introducing an assumption that subsur-
face ocean temperature is adiabatically redistributed 
following the thermocline depth variations, the CZ model 
captures to a large extent mixed‐layer SSTA dynamics 
governed by the heat budget equation (Zebiak & Cane, 
1987; also see the appendix for details).

The atmosphere and ocean are coupled in the CZ model 
by three main closure approximations: (i) an approxima-
tion for wind‐driven ocean current anomalies in the 
mixed layer that combines a vertically sheared current 
from an Ekman‐flow model with an upper‐layer current 
from the reduced‐gravity wave dynamics model, (ii) a 
nonlinear relation between the subsurface ocean temper-
ature and the thermocline depth, partly motivated by the 
dependence of the vertical profiles on the thermocline 
depth (Figure  6.1a), and (iii) a parameterized atmo-
spheric heating anomaly in response to SSTA and 
atmospheric moisture convergence anomalies in the Gill 
model framework (see Zebiak & Cane, 1987, and the 
appendix for details). Importantly, the CZ model focuses 
on the dynamical coupling processes: SSTA yields wind 

stress anomalies, which produce horizontal current and 
upwelling anomalies, as well as subsurface temperature 
anomalies that are related to dynamic redistribution of 
ocean heat and thereby feed back onto SSTA. The com-
plex thermodynamic surface heat flux feedbacks are 
greatly simplified by assuming a constant Newtonian 
SSTA damping. By focusing on the dynamical coupling 
in the tropical Pacific domain (29°S–29°N, 124°E–80°W), 
this model provides a simple coupled framework that 
fully embodies the key hypotheses for the coupled dynam-
ical feedbacks contributing to ENSO growth as envi-
sioned by Bjerknes (1969), and the ENSO turnabout 
mechanism through upper ocean heat content redistribu-
tion envisioned by Wyrtki (1985), that allows for ENSO 
to oscillate between El Niño and La Niña phases.

6.2.2. Linear ENSO Stability Analysis in the CZ Model

The CZ model framework has been the foundation for 
the advancements of ENSO linear instability theory in 
the past 30 years. The concept of linear ENSO instability 
helps us to understand the fundamental ENSO dynamics 
by exploring the most unstable intrinsic mode in a dynam-
ical system described by many simple‐to‐intermediate 
complexity models. Early work of ENSO instability 
theory (Gill, 1985; Hirst, 1986; Battisti & Hirst, 1989; 
Neelin, 1990; Jin & Neelin, 1993a, 1993b; Neelin & Jin, 
1993 (together JN93 hereafter); Jin et al., 1994; Jin, 1997a, 
1997b; An & Jin, 2000; Fedorov & Philander, 2000, 2001) 
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was largely based on simpler versions of the CZ model. 
For example, by considering the SSTA equation only 
within the equatorial strip instead of the entire tropical 
Pacific basin, JN93 developed a stripped‐down version of 
CZ model with its full ocean wave dynamics component, 
as described in the appendix. This slightly simplified CZ‐
type model allows for thorough analytical and numerical 
eigen‐analyses of the leading coupled mode in wide 
ranges of the parameter spaces and thus a basic under-
standing of how key coupled processes give rise to ENSO‐
like modes (JN93). By converting the parameter spaces to 
mean state spaces, An and Jin (2000) and Fedorov and 
Philander (2000, 2001) used the instability theory based 
on the JN93 stripped‐down model to investigate the 
diverse ENSO behaviors simulated in climate models 
under past, present, and future mean climate conditions. 
There is one ENSO‐like leading mode that stands out 
from the large continuum of eigen modes in the various 
simplified versions of the CZ model, such as the JN93 
stripped‐down version and a two‐strip model which 
further reduced the ocean equatorial wave dynamics 
within the equatorial and off‐equatorial strips (Jin, 
1997b). This type of ENSO eigen mode analysis was car-
ried out in linearized versions of the full CZ model 
(Bejarano, 2006; Bejarano & Jin, 2008; Xie & Jin, 2018) 
with respect to a broad range of both parameter space 
and basic‐state space. In these studies, the leading ENSO 
mode is largely near critical (i.e., subcritical/supercritical 
when their growth rates are slightly negative/positive) 
within a realistic range of the parameter and basic state 
spaces. When subcritical, it can be easily excited by sto-
chastic forcing, and when supercritical it can be self‐
sustained (linear growth will be constrained by nonlinear 
dynamic damping). Thus, the leading ENSO mode tends 
to dominate the internal variability in a manner similar to 
the observed ENSO behavior.

Here we give a brief  account of the behaviors of the 
leading mode in the CZ model based on a recalculation 
of eigen solutions of the CZ model because the earlier 
eigen analyses by Bejarano (2006), Bejarano and Jin 
(2008), as well as Xie and Jin (2018) shared a coding error 
that corrupted their eigen solutions (it was recently 
uncovered by Mr. Licheng Geng while working on his 
PhD thesis on the subject). This error results in an 
artificial split of the single leading oscillatory ENSO‐like 
mode into two coexisting leading modes that were 
referred in Xie and Jin (2018) as EP and CP ENSO 
modes, as their SST patterns happened to resemble EP 
and CP El Niño patterns. After the error was cleared, the 
CZ model in fact allows only a single leading ENSO‐like 
mode in broad basic state space (Figure  6.2a, b) and 
parameter space (Figure 6.2c, f), as in the earlier strip‐
down version models of JN93, An and Jin (2000), and 
Fedorov and Philander (2000). Consistent with the ear-
lier studies, the growth rate and frequency of this leading 

ENSO mode vary sensitively in the parameter and basic 
state spaces (Figure 6.2). Two solutions marked as A and 
B in Figure 6.2 and 6.2b under relatively stronger (i.e., a 
stronger mean wind stress and thus colder SST in the cold 
tongue) and weaker (i.e., a weaker mean wind stress and 
thus a warmer SST in the cold tongue) cold tongue con-
ditions display a moderate zonal shift in the mature SSTA 
pattern location, albeit much less than seen in the obser-
vations for CP and EP events (Figure 6.3b, f). However, 
there is a remarkable large difference in the linear 
 frequency. It shifts from quasi‐biannual (QB) to quasi‐ 
quadrennial (QQ) periodicity ranges when the basic state 
is changed from a relatively stronger cold‐tongue state 
(A) to a weaker cold‐tongue state (B). This strong 
dependence of the ENSO mode on the strength of the 
cold tongue basic state is important for understanding 
ENSO complexity as it is partly responsible for the ENSO 
pattern diversity simulated in CZ models as noted in 
Bejarano and Jin (2008) and Xie and Jin (2018) in their 
nonlinear solutions. Further detailed discussion on this 
subject will be presented in forthcoming papers.

6.2.3. Dynamical Mechanisms Controlling Linear 
ENSO Mode

To gain insight into the dynamics of the leading ENSO 
mode in the linearized CZ model, one may examine the 
relative importance of the different terms that contribute 
to the SSTA tendency of the mode under different basic 
state conditions (Figure  6.3). Under a relatively weak 
cold‐tongue basic state (point B in Figure 6.2a), the mode 
tends to have a QQ periodicity (Figure 6.2b). The domi-
nant contribution for the SSTA growth rate is the ther-
mocline (TH) feedback through upwelling of anomalous 
subsurface temperature, while the zonal advective (ZA) 
feedback via anomalous zonal current transport is of 
secondary importance (Figure 6.3d). In contrast, under a 
relative stronger cold‐tongue basic state (point A in 
Figure  6.2a), the mode tends to have a QB periodicity 
(Figure 6.2b) and the role of the ZA feedback becomes 
similarly important as the TH feedback (Figure  6.3h). 
These different roles of ZA and TH were previously 
noted based on observational data analysis (Kug et al., 
2009; Ren & Jin, 2013; Timmermann et al., 2018). In the 
CZ model, thermodynamics are implemented as a simple 
Newtonian SSTA damping, as indicated in Eq.  (A4a). 
This is a major oversimplification in representing coupled 
thermodynamics in terms of how ENSO SSTA alters sur-
face thermal fluxes through atmospheric moisture 
dynamics, radiative processes, and evaporative and sen-
sible heat sources. Extending the CZ model framework 
to  incorporate physically consistent thermodynamic 
 coupling is needed to better understand how coupled 
thermodynamics may shape the patterns of this leading 
ENSO mode.
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at the time when Niño‐3.4 index ascends cross zero (gray dots), and mature phase II is centered at the time when 
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the transition and La Niña phases, respectively. Also shown are the time series of Niño‐3.4 index and hw in the 
upper‐right corner. (d, h) Hovmöller diagrams of equatorial SSTA for 5°S–5°N (shadings) and the associated zonal 
advective (ZA; green contours) and thermocline (TH; purple contours) feedbacks for 2°S–2°N (10–1 °C month‐1) 
that contribute to the evolutions of SSTA. Phase –π to phase π consists of a complete ENSO cycle.
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The ENSO eigen mode displays strong sensitivity to 
changes in key parameters. Two such parameters are 
chosen as they are known to exhibit substantial ranges in 
CGCMs and because they have strong impacts on the 
growth rates and frequencies of the leading ENSO mode. 
The first is the dynamic coupling efficiency (μ) which is 
a control parameter multiplied onto the CZ  model’s 
atmospheric wind stress response to SSTA. The second 
is the thermodynamic damping (αs) (see Eq. [A4a] and 
Table  A of the appendix for details). The ENSO mode 
becomes unstable when the dynamic coupling efficiency 
increases and/or the thermodynamic damping decreases 
(Figure  6.2c, e). Interestingly, the growth rate contours 
are nearly diagonal under both relative weak and strong 
cold‐tongue basic states, indicating a strong compensation 
effect on ENSO growth rate from dynamic coupling effi-
ciency and thermodynamic damping, which is consistent 
with findings of strong error compensation in dynamic 
coupling and thermodynamic damping for “right” ENSO 
amplitude simulation in CGCMs for wrong reasons 
(Bellenger et al., 2014; Karamperidou et al., 2017; Bayr 
et al., 2018). The periodicity of the mode under different 
cold tongue strength basic states displays some depen-
dency on these parameter changes as well. The QB peri-
odicity under a strong cold tongue basic state tends to 
stay largely in the QB range but decreases/increases some-
what when the dynamic coupling and thermodynamic 
damping increase/decrease (Figure  6.2d). The QQ peri-
odicity under a weak cold tongue basic state increases to 
a 5‐ to 6‐year range as thermodynamic damping and 
dynamic coupling weakens (Figure 6.2f). Further work to 
carefully validate the CZ model against the observed 
basic state and to obtain best estimates for model param-
eters is needed to make direct comparisons with observed 
changes in ENSO behavior. Nevertheless, the results here 
indicate a significant sensitivity of the leading mode to 
dynamic coupling and thermodynamic damping. Thus, it 
is important that models simulate the individual feed-
backs correctly in order to faithfully capture both ENSO 
variance and pattern diversity. The latter still remains a 
great challenge for state‐of‐the‐art CGCMs, which are 
known for a cancellation effect between the dynamic cou-
pling and thermodynamic coupling parameters; indeed, 
many models may simulate an ENSO with realistic 
growth rate and periodicity, however, due to an incorrect 
balance of feedbacks (Bellenger et  al., 2014; 
Karamperidou et al., 2017).

The sensitive dependence of the leading ENSO mode 
on the basic state is conducive for ENSO pattern diver-
sity because relatively small modulations of the basic 
state by either natural variability or external forcing may 
give rise to significant changes in ENSO pattern, growth 
rate, and periodicity. An alternative hypothesis for this 
ENSO diversity has also been put forward, attributing it 
to a single oscillatory ENSO mode that undergoes large 

nonlinear modifications by processes in the atmosphere 
and ocean (e.g., Choi et al., 2013; Chen & Majda, 2016, 
2017; Takahashi et al., 2019). The relatively short length 
of the observational record may not be adequate to settle 
this debate at this point. Further examinations of the 
existence and behavior of ENSO regimes and their great 
sensitivity to the climate background state, as well as 
dynamic and thermodynamic coupling in both CZ‐type 
models and comprehensive climate models are needed to 
advance our understanding and simulation of ENSO 
complexity.

6.3. RECHARGE OSCILLATOR (RO) 
AND BJERKNES-WYRTKI-JIN (BWJ) INDEX

Parallel to the advancements in ENSO instability 
theory, simple conceptual models have been developed 
that depict ENSO as an oscillatory phenomenon due to 
the coupled instability envisioned by Bjerknes (1969), 
Wyrtki (1985), and Cane and Zebiak (1985). The first 
conceptual model was the delayed oscillator framework 
(Suarez & Schopf, 1988; Battisti & Hirst, 1989). This 
delayed oscillator (DO) paradigm was derived based on 
numerical simulations from intermediate complexity cou-
pled ocean‐atmosphere models. The essence of this DO 
model reflects two basic processes that cause ENSO 
SSTA to grow and to oscillate, respectively: (i) the cou-
pled positive Bjerknes feedback provides the fundamental 
growth mechanism, while (ii) wind‐driven oceanic Rossby 
waves and their western boundary reflection into the 
equatorial Kevin wave give rise to a delayed negative 
feedback that causes the ENSO phase transition. By real-
izing that the recharge and discharge of heat content in 
the equatorial ocean is achieved collectively by the 
equatorial waves and thus may be better described as an 
adjustment process instead of an oceanic wave process 
with a single delay, Jin developed the simple RO para-
digm for ENSO (Jin, 1996, 1997a, 1997b)1. The RO model 
captures the coupled oscillatory instability of ENSO 
explicitly and succinctly in the simplest possible manner 
with a two‐degree freedom dynamical system. The sim-
plicity of the RO paradigm allows for explicit quantifica-
tions of both ENSO growth rate and periodicity, which 
are referred to as the Bjerknes and Wyrtki indices, respec-
tively (Jin et al., 2006; Lu et al., 2018), or collectively as 
the Bjerknes‐Wyrtki‐Jin (BWJ) index. In the next subsec-
tion, we briefly discuss the key steps of deriving the RO, 
and the formulations of the BWJ index that encompass 
all the main processes important for ENSO linear growth 
rate and periodicity.

1 The term recharge oscillator was coined by Mark Cane, 
who suggested it in his review of the papers by Jin (1997a, 
1997b).



128 EL NIÑO SOUTHERN OSCILLATION IN A CHANGING CLIMATE

6.3.1. The Formulations of the RO Model and the BWJ 
Index

Motivated by well‐defined spatial patterns from 
both numerical and analytic eigen solutions of  ENSO 
in broad parameter spaces in JN93, Jin (1997a) 
further reduced these linear ENSO dynamics into two 
prognostic equations for eastern equatorial Pacific 
SSTA (TE) and warm pool thermocline depth anomaly 
(hw):

 
dT
dt

RT F hE
E w1 ,  (6.1)

 dh
dt

h F Tw
w E2 .

 
(6.2)

Jin et al. (2006) demonstrated using the CZ model that 
the growth rate of the most unstable ENSO mode in the 
linear CZ model can be estimated by deriving the approx-
imate but analytical form of the processes that are encom-
passed in the parameters R and ε. The former includes the 
six dominant positive and negative feedbacks that deter-
mine the growth of eastern Pacific SSTAs. The latter 
denotes the dynamic adjustment rate of the equatorial 
warm pool thermocline depth. The linear frequency of the 
RO can be evaluated as well using all four parameters. 
Parameter F1 represents the ocean dynamic feedback from 
anomalous zonal advection and vertical heat advection 
associated with the discharge/recharge of equatorial warm 
pool heat content. Parameter F2 indicates the efficiency of 
the recharge/discharge driven by equatorial wind stress 
anomalies induced by the ENSO SSTA. The  complex 
eigenvalue of the RO can be written as follows:

Table A Definitions and values of model variables and parameters

Variable/
Parameter Definition/Default Values

εa Linear dissipation in the atmosphere, εa = (2 days)–1

ua, va Zonal and meridional winds in the lower atmosphere layer
β0y Coriolis parameter at distance y away from the equator
ca Propagation speed of atmospheric Kelvin wave, ca = 60 m s–1

β Atmospheric heating parameter, β=1.6×104 m2 s–2

T , c Mean SST and atmospheric convergence

T, c SST and atmospheric convergence anomalies
u, v Zonal and meridional ocean currents in the upper ocean layers
τx,τy Zonal and meridional wind stresses
h Fluctuations of thermocline depth
H Reference thermocline depth
S Percentage of standard mean wind stress during 1980–2000 (see Figure 6.2)

g Reduced gravity acceleration, g g= 

∆ρ Density difference between the upper and motionless layers
 r Ocean dynamical damping rate, (2.5 years)–1

rs Dynamical damping rate of the velocity shear, rs = (2 days)–1

ws Ocean upwelling, w H
u
x

v
ys 1

1 1

M(x) Heaviside function, M(x) = 
x x

x
,
,

0
0 0

TZ Mean vertical temperature gradient in the ocean
Te Entrainment temperature anomaly
γ Entrainment efficiency: γ is set to 0.6 instead of 0.75.
αs Thermodynamic damping rate, αs = (125 days)–1

h Mean thermocline depth along the equator

T1, b1, T2, b2 Constants controlling the subsurface temperature anomalies, T1 = 28°C, T2 = –40°C, b1 = (80 m)–1,  
b2 = (33 m)–1



SIMpLE ENSO MOdELS 129

 BWJ
R

i F F
R

2 41 2

2

, (6.3)

where the real part of the index was referred to as the ENSO 
Bjerknes stability (BJ) index in Jin et  al. (2006), and the 
imaginary part as the Wyrtki frequency (WF) index in Lu 
et al. (2018). Together we refer to the complex eigenvalue as 
the Bjerknes‐Wyrtki‐Jin (BWJ) index for the ENSO oscilla-
tory instability as it was first derived in its approximate and 
quasi‐analytical formulation in Jin (1997a, 1997b). It has 
been demonstrated to be useful for understanding and eval-
uating ENSO’s growth rate and periodicity in both reanal-
ysis data and CGCM simulations.

6.3.2. The Derivation of the BWJ Index

For simplicity, we use the Niño‐3 index (SSTAs aver-
aged over 5°S–5°N, 150°–90°W) to represent ENSO SST 
anomalies. The volume‐averaged mixed‐layer tempera-
ture anomaly tendency equation in the Niño‐3 region can 
be written as follows:

T

t
u T v T w T u T v T w Tx y z x y z

LDH

� ����������� ������������

� ����� ����� � ��� ���
u T v T w T Q C Hx y z o p

NDH TDH

/ RR

SG

� ,

 
(6.4)

where u, v, and w are the zonal, meridional, and vertical 
velocities, T the potential temperature, Q the net surface 
heat flux into the ocean, H the mixed‐layer depth (set to 
50m), Cp the specific heat of seawater at constant pressure 
(set to 3994 J kg‐1 K‐1), and ρ0 the reference density of sea-
water (set to 1025 kg m‐3). R denotes subgrid‐scale 
processes and overbars denote climatological means. The 
terms on the right‐hand side (RHS) of Eq. (6.4) represent 
linear dynamic heating (LDH), nonlinear dynamical 
heating (NDH), thermodynamic heating (TDH), and 
subgrid‐scale contributions (SG) (e.g., oceanic turbulent 
mixing, nonlinear heating due to tropical instability wave 
and eddy activity) (An & Jin, 2004).

Following Jin et al. (2006) and also denoting 〈T  〉 as TE, 
the above equation can then be linearized as follows:

 

T
t

u

L

yv

L

M w w

H
T

x y m

E
E

DD

2
2

� �������� ��������

MM w w

H
T

u T v T w M w

m
sub

x A y
A

TH

MAZA

� ���� ����

� ��� ���� �� �� zz p mT Q C H

VA TD
� ���� ���� � ��� ���

/ .0

 (6.5)

The terms on the RHS of Eq. (6.5) represent advection 
due to mean zonal and meridional currents as well as 

mean upwelling (also referred to as dynamical damping, 
DD), the thermocline feedback (TH), the zonal advective 
feedback (ZA), the meridional advective feedback (MA), 
the vertical advective feedback (VA), and the thermody-
namic damping (TD), respectively. Lx and Ly are the 
effective zonal and meridional scales that reflect box 
averaged quantities. The factor y in the second term on 
the RHS denotes the meridional coordinate, which 
comes from the assumption that the SSTAs have a 
Gaussian‐like meridional pattern with an e‐folding decay 

(Jin et al., 2006), M x
x

otherwise

1 0

0

,

, ,
 is a Heaviside 

step function that only considers regions with upward 
vertical motion, Hm is the effective depth for the vertical 
advection (set to 50 m), and Tsub is the subsurface temper-
ature at 75 m depth. As for the CZ model (Zebiak & 
Cane, 1987), the parameter γ (set to 0.75) measures the 
effectiveness of vertical entrainment using box‐averaged 
quantities to represent the average vertical advection 
from gridded data. The nonlinear and subgrid terms will 
be considered in a later subsection.

Following Jin (1997b) and Jin et al. (2006), we give a 
brief  account of the key assumptions for deriving the RO 
model and the BWJ index using SODA version 3.3.1 
reanalysis data (Carton et al., 2018) for the period 1980–
2015. The Niño‐3 region (5°S–5°N, 150°–90°W) is used to 
represent ENSO SST variability (Figure 6.4a). The zonal 
wind response to the positive SSTA shows strong anoma-
lous westerlies in the western and central Pacific and weak 
anomalous easterlies in the eastern Pacific (Figure 6.4a). 
This Gill-Matsuno response (Matsuno, 1966; Gill, 1980) 
delineates the different zonal wind responses to the west 
and east of  the heating source. We use the Sverdrup 
balance to relate the thermocline anomalies in the western 
and eastern equatorial box to zonal wind stress anomalies 
in the central Pacific (Figure  6.4a). Following the CZ 
model framework, the anomalous upwelling in the eastern 
Pacific consists of  both Ekman upwelling and wave‐
induced upwelling; the former is related to the local zonal 
wind stress anomalies, whereas the latter is related to the 
nonlocal thermocline tendency, which may be further 
related to warm pool heat content and ENSO SST. The 
mixed‐layer equatorial zonal and meridional currents 
and upwelling anomalies in the Niño‐3 box all have both 
Ekman and geostrophic components. The Ekman part is 
determined by the local wind stress in the Niño‐3 box, 
whereas the geostrophic part can be approximately related 
to remote zonal wind stress in the central Pacific and the 
thermocline depth in the equatorial Pacific (Jin, 1997b; 
Jin & An, 1999). Subsurface temperature anomalies in 
the eastern Pacific are related to the thermocline anomaly 
locally (Figure  6.4a). Finally, the net thermodynamic 
heating from surface heat flux anomalies is linearized in 
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Figure 6.4 Equatorial Pacific annual mean climatology and relevant anomalies during El Niño peak phase. The El 
Niño peak state is represented by the regressed anomalies onto the normalized volume averaged mixed layer 
(0–50 m) ocean temperature anomaly over the Niño‐3 region. Panels from top to bottom are horizontal distributions 
of mixed layer temperature, subsurface temperature at 75 m depth, thermocline depth (20°C isotherm depth), 
mixed layer zonal current, mixed layer meridional current, vertical motion at bottom of mixed layer (at 50 m), 
zonal wind stress, and net heat flux into the ocean. The Niño‐3 region (5°S–5°N, 150°–90°W), hw (5°S–5°N, 
120°E–155°W), he (5°S–5°N, 155°–80°W), and [τx] (5°S–5°N, 150°E–130°W) regions are indicated by black boxes.
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terms of local SSTA (Figure 6.4a). These quasi‐balance 
approximation linear relationships can be derived from 
the CZ framework and be expressed as follows:

 x aTE,
 

(6.6)

 x aT
* ,E  (6.7)

 
h h h xe w ,  (6.8)

 
w hwr x wl x wh w ,  (6.9)

 
u hur x ul x uh w ,  (6.10)

 
v h

A vr x vl x vh w ,  (6.11)

 T a hsub h e , (6.12)

 
Q C H Tp/ ,0 E  (6.13)

where [τx] denotes central equatorial Pacific zonal wind 
stress anomalies (5°S–5°N,150°E–130°W), 〈τx〉 the aver-
aged zonal wind stress anomalies in the Niño‐3 region, he 
the averaged thermocline depth anomalies over the eastern 
Pacific box (5°S–5°N,155°–80°W), and hw the averaged 
thermocline depth anomalies over the western Pacific box 
(5°S–5°N, 120°E–155°W). By combining Eqs. (6.6) and 
(6.8), we get the following linear relation:

 
h h TTe w E.

 (6.14)

The feedback coefficients are determined using linear 
regressions.

Figure  6.5 shows time series and scatter plots of the 
linear relations in Eqs. (6.6)–(6.13) obtained from SODA 
reanalysis. The linear balance equation for [τx] holds very 
well with a correlation coefficient between [τx] and μaTE of 
0.81 (Figure 6.5a). However, the linear relation for 〈τx〉 is 
very weak (Figure 6.5b), partly because of its sensitivity to 
the SSTA pattern according to the Gill-Matsuno response 
(Gill, 1980). The Sverdrup balance, subsurface temperature 
anomalies, and surface heat flux anomalies relations hold 
remarkably well with correlation coefficients of 0.83, 0.97, 
and 0.87, respectively (Figure 6.5c, g, h). The linear closure 
relationships for ocean zonal and meridional currents and 
upwelling are slightly weaker, with correlation coefficients 
of 0.70, 0.87, and 0.80, respectively (Figure  6.5e, f, d), 
because of significant uncertainties in ocean current data 
(Hayashi & Jin, 2017) and oceanic nonlinearities (Dijkstra, 
2005). The estimated parameters are listed in Table 6.1.

Using the linear relationships in Eqs. (6.6)–(6.13), those 
six RHS terms can be expressed linearly in TE and hw, 
which yields formulations for R and F1 as follows:
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(6.16)

By considering both Ekman and quasi‐balanced wave 
dynamics induced zonal and meridional current anom-
alies and upwelling anomalies in Eqs. (6.9)–(6.11), our 
new formulation established here is more complete in 
assessing the roles of Ekman feedback than those in Jin 
et al. (2006), Kim and Jin (2011), and Lu et al. (2018) as 
it now appears consistently in the zonal, meridional, and 
vertical advection terms.

Following the equatorial strip approximation to the 
ocean dynamics equations (Eqs. [3.4]–[3.5] in Jin, 1997b), 
the slow adjustment of the warm pool ocean heat content 
described by linear reduced gravity wave ocean dynamics 
can be further systematically reduced into its simplest 
possible form as

 

dh
dt

h h F Tx
w

w w E2 ,
 

(6.17)

where ε = (1 − rwre)C/2L, F2 = κμa, and κ = (θ − re)L/4ρHC2. 
Here, ε is the slow adjustment scale, which depends on the 
Kelvin wave speed (C), the Pacific basin width (L), and 
constant wave reflection efficiencies at the lateral bound-
aries (rw, re). Parameter κ is the warm pool ocean heat 
content recharge/discharge efficiency. It depends on the 
proportionality of wind stress curl off the equator to the 
wind stress on the equator (θ), and the eastern boundary 
reflection efficiency (Jin, 1997b). Equation (6.17) can be 
solved analytically by presenting heat content information 
as the integral effect of the finite memory of SSTA, i.e.,

 

ˆ .h F e T s ds
t

s t
w E2

 
(6.18)

Parameters ε and F2 depend on the ENSO wind stress 
pattern, including its meridional width and longitudinal 
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Figure 6.5 Time series (left panels) and scatter plots (right panels) from the balanced relations for deriving and 
determining the parameters of the recharge oscillator (RO) model. (a) [τx] = μaTE, (b) x aT

*
E, (c) he − hw = βh[τx], 

(d) 〈w〉 =  − βwr[τx] − βwl〈τx〉 + βwhhw, (e) 〈u〉 = βur[τx] + βul〈τx〉 + βuhhw, (f) 〈v〉A = βvr[τx] + βvl〈τx〉 + βvhhw, (g) 〈Tsub〉 = ahhe, 
and (h) 〈Q〉/(ρ0CpH) =  − αTE. The black and red curves denote the observed monthly anomalies and fitted monthly 
anomalies, respectively. The feedback coefficients and correlation coefficients between observed and fitted 
anomalies are indicated.
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location as formulated in Jin (1997b). Here, they are cal-
culated by least square fitting of observed hw and TE. 
Using SODA reanalysis data, this fitting method  

results in ε = 1.40 year‐1 and F2 = 18.2 m °C‐1 year–1, with 
a  correlation coefficient between hw and ĥw of ~0.89 
(Figure 6.6a).

Table 6.1 The annual mean background state parameters, feedback coefficients, and Bjerknes‐Wyrtki‐Jin index for Niño‐3 
region estimated using the SODA‐3.3.1 monthly data.

Symbol Value Unit Note

H 50 m Mixed layer depth

Lx 6.67×106 m Effective zonal scale

Ly 1.11×106 m Effective meridional scale

Hm 50 m Effective vertical scale for vertical advection

γ 0.75 1 Mixing efficiency of 〈T〉 − 〈Tsub〉

u Lx/ ‐1.31×10‐8 s‐1 Scaled mean zonal current

2 2yv Ly/ ‐1.36×10‐8 s‐1 Scaled mean meridional current

M w w Hm/ 7.62×10‐8 s‐1 Scaled mean upwelling

xT ‐5.58×10‐7 °C m‐1 Zonal gradient of mean temperature

y AT 4.13×10‐6 °C m‐1 Antisymmetric competent of meridional gradient of mean temperature

M w Tz 4.84×10‐2 °C m‐1 Vertical gradient of mean temperature

μa 7.53×10‐3 N m‐2 °C‐1 Eq. (6.6)

μa
* ‐3.65×10‐4 N m‐2 °C‐1 Eq. (6.7)

βh 1383.9 m3 N‐1 Eq. (6.8)

βur 4.91 m3 s‐1 N‐1 Eq. (6.10)

βul 0.39 m3 s‐1 N‐1 Eq. (6.10)

βuh 4.98×10‐3 s‐1 Eq. (6.10)

βvr ‐0.34 m3 s‐1 N‐1 Eq. (6.11)

βvl ‐0.95 m3 s‐1 N‐1 Eq. (6.11)

βvh ‐1.73×10‐4 s‐1 Eq. (6.11)

βwr 4.58×10‐5 m3 s‐1 N‐1 Eq. (6.9)

βwl 7.77×10‐5 m3 s‐1 N‐1 Eq. (6.9)

βwh ‐6.75×10‐8 m3 s‐1 N‐1 Eq. (6.9)

ah 0.138 °C m‐1 Eq. (6.12)

α 0.188 month‐1 Eq. (6.13)

βT 14.7 m°C‐1 Eq. (6.14)

R 0.79 year‐1 Eq. (6.15)

F1 0.46 °C m‐1 year‐1 Eq. (6.16)

ε 1.40 year‐1 Eq. (6.18)

F2 18.2 m °C‐1 year‐1 Eq. (6.18)

BJ ‐0.30 year‐1 (R − ε)/2

WJ 2.34 year 4 4 1 2

2
/ FF R

WJBF 2.17 year 1 22 / FF
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Warm pool heat content discharge and equatorial wide 
heat content discharge (hm) are related (Wyrtki, 1985; Jin, 
1997a, 1997b):
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Figure 6.6 Time series (left panels) and scatter plots (right panels) from the thermocline dynamics of the RO 
model. (a) Western Pacific thermocline depth anomalies hw and RO ĥw using Eq. (6.18), (b) thermocline depth 

tilt he − hw and βTTE, (c) eastern Pacific thermocline depth anomalies he and TT hE
ˆ

w , (d) basin mean thermocline 

depth anomalies hm and E w
ˆ/ 2TT h , (e) same as (d) but for RO fitted ĥm using Eq. (6.20). The feedback coefficients 

and correlation coefficients between observed and fitted anomalies are indicated.
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The above expression for basinwide heat content is similar 
to Eq. (8.7) of Fedorov (2010), who derived a slightly more 
complex formulation also using both Sverdrup balance and 
a slow oceanic adjustment process under a weak oceanic 
damping assumption. As shown in Figure 6.6a–d, the slow 
ocean heat content adjustment and equatorial Sverdrup 
balance capture the relation of ENSO SST with western, 
eastern, and zonal mean equatorial heat content remarkably 
well, with improved correlations compared to previous 
studies (Fedorov, 2010; Izumo et al., 2019).

Both warm pool heat content and basinwide heat 
content have been used in the past to describe the 
recharge/discharge process (Jin, 1997a; Lu et al., 2018). 
In order to test which one is more suitable, we use a sim-
ilar form of Eq. (6.2) but with two different parameters 
for basinwide heat content:

 m ( )
m 2m E

ˆ ( )
t

s th F e T s ds  (6.20)

The best fit gives an adjustment time scale of 0.24 year–1, 
which is much longer than that for western equatorial 
heat content. This is consistent with the notion that 
equatorial heat content has a slow adjustment time scale 
(Burgers et al., 2005). However, the resulting ĥm only cap-
tures the very slow variation of hm with a correlation coef-
ficient of about 0.59 (Figure 6.6e), which is a significantly 
less effective expression for equatorial heat content than 
the expression that combines the Sverdrup balance and 
the western Pacific warm‐pool heat content (Eq. 6.19). 
This result is consistent with recent studies (Neske & 
McGregor, 2018; Planton et al., 2018; Izumo et al., 2019), 
suggesting that western equatorial heat content is better 
suited to describe the recharge/discharge process.

With these analytical formulations of ε and F2, we now 
derive all the parameters in the BWJ index for the RO under 
a number of reasonable quasi‐balance approximations. For 
the SODA reanalysis mean state, the BWJ index yields an 
ENSO growth rate of −0.30 year–1 and a period of 2.34 
years (Table 6.1), which indicates that ENSO linear coupled 
dynamics are very close to criticality. This is significantly 
different from a much stronger damping rate estimated 
from linear inverse modeling. This difference largely comes 
from the fact that the nonlinear damping from both deter-
ministic and stochastic nonlinear processes are already 
included in the estimated ENSO growth rate from linear 
inverse modeling by construction but not included in the 
BWJ index. Furthermore, the estimated linear period is 
substantially shorter than the average observed ENSO 
period. This periodicity is sensitive to the characterization 
of the basic state, the details of parameterizing the subsur-
face temperature anomalies, and the nonlinear corrections 
(see the appendix of Jin, 1997a). Nevertheless, this linear 
analysis of the BWJ index is roughly consistent with fitting 

the linear RO model directly with observational data, 
although the latter method gives a more negative linear 
growth rate but longer period. The advantage of using the 
BWJ index comes from its decomposition of the contribu-
tions to ENSO growth rate and frequency from different 
coupled processes. As shown in Figure  6.7a, the TH 
feedback is the largest contributor to the instability growth, 
and the ZA feedback is the second largest. The TD damp-
ing is the largest damping term and the DD the second larg-
est. These results are consistent with the results obtained 
from the SODA 2.0.2 reanalysis (Kim et al., 2014).

6.3.3. Seasonal Modulation of BWJ Index

In this subsection, we consider seasonal modulations 
of the RO due to seasonality in the background state and 
feedback coefficients. As shown in Figure 6.7b, season-
ality in the Sverdrup balance, i.e., the response of the ther-
mocline in the western equatorial Pacific to central Pacific 
wind stress anomalies (βh), has a positive TH feedback 
maximum during boreal winter and a minimum during 
late spring and summer. The seasonal response of ther-
modynamic heating to local SST (α) results in a negative 
TD feedback that has its maximum during late winter 
and spring and a minimum during fall. Seasonality in the 
strength of the mean ocean currents results in a negative 
MA feedback maximum during spring and a minimum 
during late summer and fall. The seasonal strength of 
zonal and meridional advection feedbacks results in a 
positive ZA feedback maximum during fall and a 
minimum during late winter and spring. The joint effect 
is a seasonal growth rate that is maximum during boreal 
late summer and minimum during spring, consistent with 
the results of Stein et al. (2014). The seasonal processes 
described have been noted to play an important role both 
in the seasonal synchronization of ENSO (Stein et  al., 
2014) and the ENSO spring auto‐correlation barrier 
(Levine & McPhaden, 2016). There is also strong season-
ality in the Wyrtki index, although the actual impact of 
seasonality on ENSO main periodicity should be prop-
erly assessed using the Floquet exponent analysis (Jin 
et al., 1996). Additional discussion of ENSO seasonality 
is given in section 6.4.

6.3.4. Nonlinear Dynamical Heating, Subgrid 
Processes, and Noise Forcing of ENSO

Next, we decompose the SSTA equation as

T
t

T
t

T
t

LD LN TD TN

ND NN SGD SGN

E E E

D N
,
 
(6.21)
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where 
T
t
E

D
 and 

T
t
E

N
 denote the total determin-

istic feedbacks and noise, LD and LN denote linear 
dynamic deterministic feedbacks and noise, TD and 
TN denote thermodynamic deterministic feedback 
and noise, ND and NN denote nonlinear dynamic 
deterministic terms and noise, and SGD and SGN 
denote subgrid dynamic deterministic terms and noise, 
respectively. Based on the RO framework, the linear 
deterministic terms can be written as

 LD T F hR E w1 , (6.22)

 TD TE. (6.23)
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Figure 6.7 The Bjierknes‐Wyrtki‐Jin index and its individual components. (a) The estimates using the annual mean 
background state and feedback coefficients derived from monthly data. (b) The estimates using each month 
background state and feedback coefficients derived from data for each month. DD represents the dynamic damp-
ing, TD the thermodynamic damping, ZA the zonal advective feedback, MA the meridional advective feedback, 
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dynamic adjustment rate of the equatorial warm‐pool thermocline depth, BJ is the Bjerknes stability index (R‐ε)/2, 

WJ represents Wyrtki period index, and WJBF is the period index ignoring contributions of R and ε, i.e., 1 22 / FF .
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The oceanic mixing and subgrid feedbacks included in 
the residual contribute to the linear feedbacks. This calls 
for a more thorough study of how these processes con-
tribute to basic ENSO dynamics. Moreover, by fitting the 
NDH and SG with the form of Eqs. (6.24) and (6.25), we 
note that there are three cubic and two quadratic non-
linear terms that tend to dominate the ND and SGD 
terms. The coefficients are listed in Tables  6.2 and 6.3. 
This finding suggests that the nonlinear deterministic 
dynamics and nonlinearity from the subgrid processes 
may both contribute to the nonlinearity of ENSO.

As shown in Figure 6.8, we find a correlation coefficient 
of R(LD, LDH) = 0.57. The thermodynamic term is cap-
tured remarkably well with a correlation coefficient of 
R(TD, TDH) = 0.87. By least square fitting NDH using 
Eq. (6.24), we find a correlation of R(ND, NDH) = 0.55, 
and by least square fitting SG using Eq. (6.25), we find a 
correlation of R(SGD, SG) = 0.49. The nonlinear terms, 
particularly the substantial cubic nonlinear terms, serve as 
nonlinear damping, whereas the relative weak quadratic 
nonlinear terms may contribute to ENSO asymmetry, all 
of which will be demonstrated in section 6.4.

Similarly, we decompose the warm pool thermocline 
depth equation into the deterministic and noise terms as
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where the deterministic part can be written as
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h F Tw
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In addition to the linear and nonlinear deterministic 
dynamics, we can also assess the noise forcing terms:

 
LN  LDH LD,

 (6.28)

 
TN TDH TD,

 (6.29)

 
NN NDH ND,

 (6.30)

 
SGN SG SGD.

 (6.31)

It is clear that the total noise forcing has considerable 
amplitude on time scales much faster than the ENSO time 
scale. However, this high‐frequency noise forcing estimated 
in this low‐order system is not at all effective in exciting low‐
frequency (i.e., interannual) ENSO variability. Only the 
low‐frequency part of the noise forcing can effectively drive 
ENSO and thereby affect ENSO amplitude. It is also 
worthy to mention that when the low‐frequency compo-
nent of the noise is truly a part of near white noise, it has no 
predictability, Therefore, the predictability of ENSO largely 
resides in its linear and nonlinear deterministic dynamics.

Figure  6.9 illustrates the linear, nonlinear, and noise 
forcing tendency vectors in RO phase space. The rotation 
and divergence of vectors demonstrate the oscillator and 
growth of ENSO. As shown in Figure 6.9, the linear deter-
ministic vectors demonstrate an obvious clockwise rota-
tion. In contrast, the rotation signal over the nonlinear 
deterministic and noise forcing tendency vectors are less 
clear; this indicates that ENSO oscillation is dominated 
by linear deterministic dynamics.

6.3.5. On the Relationship of the RO and DO 
Paradigms

The DO and RO models for ENSO have been consid-
ered as two different but equivalent conceptual models 
for the basic dynamics of ENSO (Jin, 1997b; Fedorov, 
2010). Both models are derived from the CZ framework. 
The only key difference between the two resides in the 
consideration of how the equatorial warm pool heat 
content or the thermocline respond to ENSO wind forc-
ing. In the RO model, the warm pool heat content is 
governed by adjustment equation (6.13) with its adjust-
ment time scale controlled by both eastern and western 
boundary reflections, wave propagation time scale, and 
the mass discharge/recharge due to the near‐equatorial 

Table 6.2 The coefficients of nonlinear deterministic quadratic and cubic terms.

Symbol Value Unit Terms

CN1 3.68 + 21.61 cos ωat − 3.99 sin ωat 10‐2 °C‐1 year‐1 TE
2

CN2 −1.48 + 0.83 cos ωat − 0.56 sin ωat 10‐2 m‐1 year‐1 TEhw

CN3 −27.67 − 2.93 cos ωat − 7.37 sin ωat 10‐2 °C‐2 year‐1 TE
3

CN4 −5.01 − 0.69 cos ωat + 1.43 sin ωat 10‐2 °C‐1 m‐1 year‐1 T hE w
2

CN5 −0.41 + 0.07 cos ωat + 0.33 sin ωat 10‐2 m‐2 year‐1 T hE w
2

Note. ωa is the annual frequency.
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wind stress curl and wind stress longitudinal location 
(Jin, 1997b). In contrast, the DO as formulated in Battisti 
and Hirst (1989) assumed in an ad hoc way that ENSO‐
induced equatorial wind anomalies in the central Pacific 
drive an equatorial Rossby wave response that is reflected 
into an equatorial Kelvin wave and determines the west-
ern equatorial thermocline depth without any 
consideration of eastern boundary reflection, leading to 
the following simple equation:

 
h a tCw w .

 (6.32) 

There are two parameters in each model. The adjust-
ment time scale and recharge/discharge efficiency in the 
RO model can both be systematically derived as shown in 
Jin (1997b). Both the adjustment dynamics formulation 
(RO) and the delayed response formulation (DO) are of 
comparable effectiveness in capturing the warm pool heat 
content evolution to a large extent, but adjustment 
dynamics not only consider the wind stress curl effect 
explicitly, but also filter out high frequency noise in the 
wind stress forcing effectively. In contrast, the delayed 
response dynamics are less clear on the role of wind stress 
curl and cannot filter out noise in the wind stress. 
Moreover, the DO formulation is in fact a more complex 
mathematical description than the RO formulation 
because the DO has an infinite number of degrees of free-
dom in terms of independent eigenmodes, whereas the 
RO has a minimal two degrees of freedom without redun-
dancy. Nevertheless, conceptually the DO and RO are 
two succinct descriptions of ENSO basic dynamics, and 
both have played important roles in advancing ENSO 
theory. An obvious advantage that stems from the sim-
plicity of the RO paradigm is an algebraic formulation 
for the BWJ index, which serves as a useful tool for 
dynamically assessing the various contributions of cou-
pled processes to ENSO linear growth rate and frequency 
as envisioned by Bjerknes (1969), Wyrtki (1985), and 
Cane and Zebiak (1985). Further analyses of the phase 

diagrams and vector fields associated with the simple RO 
paradigm as shown in Figure  6.9 (also Jin, 1997a; 
Takahashi et al., 2019) reveal its value in understanding 
the observed, simulated, and predicted ENSO behaviors.

6.4. FACTORS CONTROLLING ENSO AMPLITUDE, 
PERIODICITY, PHASE-LOCKING, ASYMMETRY, 

AND NONLINEAR RECTIFICATION

Sections 6.2 and 6.3 provide a simple account of how 
the dynamics of the Pacific warm pool and cold tongue 
basic states allow perturbations to grow into ENSO 
cycles, and how it largely can be reduced into a minimal 
RO model for the simplest possible explicit depiction of 
the Bjerknes‐Wyrtki coupled instability for ENSO. In this 
section, we will use the RO model to systematically revisit 
basic questions of ENSO dynamics, i.e., what are the key 
factors that control ENSO amplitude, phase‐locking, El 
Niño/La Niña asymmetry, and its nonlinear rectification 
onto the mean state.

6.4.1. ENSO Amplitude

To investigate these issues, we consider the following 
form of the RO model:

dT

dt
RT h BT cT bT

dh

dt
h T

E
E w E E E

w
w E

0
3 2

0

1

 

(6.33) 

(6.34)

 

d
dt

m w t
 

(6.35)

 R R R ta a0 sin . 
(6.36)

Table 6.3 The coefficients of subgrid deterministic linear, quadratic, and cubic terms.

Symbol Value Unit Terms

CS1 1.37 + 0.42 cos ωat + 0.31 sin ωat year‐1 TE

CS2 −3.42 + 2.82 cos ωat − 1.15 sin ωat 10‐2 °C m‐1 year‐1 hw

CS3 −26.69 − 12.41 cos ωat + 34.56 sin ωat 10‐2 °C‐1 year‐1 TE
2

CS4 −14.79 + 14.99 cos ωat + 1.25 sin ωat 10‐2 m‐1 year‐1 TEhw

CS5 −0.14 + 0.69 cos ωat − 0.30 sin ωat 10‐2 °C‐2 year‐1 TE
3

CS6 4.64 − 0.42 cos ωat + 6.75 sin ωat 10‐2 °C‐1 m‐1 year‐1 T hE w
2

CS7 −0.19 + 0.57 cos ωat + 0.58 sin ωat 10‐2 m‐2 year‐1 T hE w
2

Note. ωa is the annual frequency.



1980
–1.5

–1

–0.5

(°
C

 m
on

th
–1

)

0

0.5

1

–1

–0.5(°
C

 m
on

th
–1

)

0

0.5

1

1.5
(a)

–1.5

–1

–0.5

(°
C

 m
on

th
–1

)

0

0.5

1

1.5
(d)

–1.5

–1

–0.5

(°
C

 m
on

th
–1

)

0

0.5

1

1.5

–10

(m
 m

on
th

–1
)

–5

0

5

10

(e)

(b)

–1

–0.5(°
C

 m
on

th
–1

)

0

0.5

1
(c)

(f)

1985 1990 1995 2000

Year

2005 2010 2015

1980 1985 1990 1995 2000

Year

2005 2010 2015

1980 1985 1990 1995 2000

Year

2005 2010 2015

1980 1985 1990 1995 2000

Year

2005 2010 2015

1980 1985 1990 1995 2000

Year

2005 2010 2015

1980 1985 1990 1995 2000

Year

2005 2010 2015

LN
LD
LDH

TN
TD
TDH

R = 0.57

R = 0.87

NN

SG
SGD
SGN

∂hw/∂t
[∂hw/∂t]D
[∂hw/∂t]N

ND
NDH

R = 0.55

R = 0.49

R = 0.55

R = 0.66

∂TE/∂t
[∂TE/∂t]D
[∂TE/∂t]N
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and its deterministic part and noise (SG, SGD, and SGN, respectively); (e) total TE tendency and its deterministic 
part and noise; (f) total hw tendency and its deterministic part and noise. Black curves denote original tendency 
of LDH, TDH, NDH, SG, ∂TE/∂t, and ∂hw/∂t. Red curves denote RO deterministic parts of LD, TD, ND, SGD, 
[∂TE/∂t]D, and [∂hw/∂t]D. Blue curves denote noise parts of LN, TN, NN, SGN, [∂TE/∂t]N, and [∂hw/∂t]N. The corre-
lation coefficient between deterministic part and original term is indicated, respectively.
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Here, a few additional parameters are introduced for 
the strength (Ra), frequency (ωa), and phase (φ) of a 
seasonal cycle modulation of the growth rate, for cubic 
(c) and quadratic (b) nonlinearities, and for additive (σ) 
and multiplicative (σB) noises. Westerly wind bursts 
(WWBs) affect ENSO, and importantly ENSO also mod-
ulates WWBs (e.g., Kessler et  al., 1995; Kleeman & 
Moore,1997; Vecchi & Harrison 2000; Yu et  al., 2003; 
Fedorov et al., 2003, Lengaigne et al., 2004; McPhaden, 
2004; Zavala‐Garay et al., 2005; Eisenman et al., 2005). 
The state‐dependent stochastic forcing excitations 
included in the RO model here thus represent ENSO‐
modulated WWBs (Jin et al., 2007; Levine & Jin, 2010). 
The quadratic and cubic nonlinearities represent NDH 
from both deterministic nonlinear advection and 
upwelling as well as from the upscale effect of ENSO’s 
modulation of tropical instability waves (TIW) (An, 
2008; Boucharel & Jin, 2020). One may also include a 
convective threshold that is nonlinear in the growth rate 
(Choi et al., 2013; Takahashi et al., 2019). These physi-
cally motivated nonlinearities are similar in terms of their 
qualitative impacts on the basic ENSO properties. As 
shown in section  6.3, there are a few more nonlinear 

terms, but the details of how many of these terms are 
required to model ENSO realistically may vary depend-
ing on whether reanalysis data or CGCM simulations are 
investigated. Here, we will keep the minimum number of 
nonlinear terms in the nonlinear stochastically forced RO 
model that is adequate to qualitatively explore the afore-
mentioned fundamental ENSO dynamics.

For simplicity, we first consider a case in which the 
symmetry breaking processes are disabled (b = 0, 
B = 0). We also assume no seasonal cycle modulation 
(Ra = 0), resulting in a base case of  the RO model under 
normal (cubic) nonlinearity and additive noise forcing. 
By considering a second order closure approximation 
(e.g., Launder et  al., 1975), the fourth moments of 
SSTA and of  the warm pool thermocline anomaly 
covariability can be expressed in terms of  their second 
moments:

 T K T hT K hT TE E E E E
4

0
2 2 3

1
2, . 

(6.37)

We can then derive an approximate ENSO SSTA vari-
ance equation as follows:
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Figure 6.9 Schematic representation of RO linear deterministic, total deterministic, and noise‐forcing dynamics. 
The vectors denote the tendency in phase space of the mixed layer volume averaged temperature anomalies over 
the Niño‐3 region and western Pacific 20°C isotherm depth anomalies (5°S–5°N, 120°E–155°W): (a) (LD+TD, 
[∂hw/∂t]D), (b) ([∂TE/∂t]D, [∂hw/∂t]D), and (c) ([∂TE/∂t]N, [∂hw/∂t]N), respectively. In the temperature equation, LD and 
LN denote linear dynamic deterministic feedbacks and noise, TD and TN thermodynamic deterministic feedback 
and noise, [∂TE/∂t]D and [∂TE/∂t]N total deterministic feedbacks and noise, respectively. In thermocline depth 
equation, [∂hw/∂t]D and [∂hw/∂t]N denote linear dynamic deterministic feedbacks and noise, respectively. The 
shading denotes a kernel density estimate of the joint probability distribution of the two time series, TE and hw. 
The vertical and horizontal dashed lines denote the peak of the probability distribution for TE and hw, 
respectively.
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Here 

2 1
2

0
2 2

1
2

R
cK T

R cK T

E

E

 is a relatively small 

factor with weak dependence on the ENSO amplitude. 
This equation clearly indicates that ENSO amplitude 
depends on only three key factors: (i) the degree of near 

criticality as measured by the linear growth rate 
R

2
, 

(ii) the strength of cubic nonlinear damping (c), and (iii) 
the amplitude of stochastic excitation ( ˆ 2) as shown in 
Figure 6.10. How ENSO amplitude depends on the linear 
growth rate for different levels of noise forcing is shown 
in Figure  6.10b. When there is no stochastic excitation 
( ˆ 2 0) (red curve), we have the standard form of ENSO 
amplitude dependence on criticality with zero self‐
sustained amplitude that is subcritical (R − ε < 0), which 
is also referred to as stable regime, and a square root 
dependence of amplitude on the super‐criticality 
(R − ε > 0). This result is similar to the solution obtained 
in the appendix of  Jin (1997b). When ˆ 2 0, the sto-
chastically forced solution transforms smoothly into a 
nonlinear dependence of ENSO amplitude on the criti-
cality. Moreover, the increased level of noise indicates the 
distribution of ENSO’s probability density function 
becomes flatter (Figure  6.10a). ENSO amplitude 
decreases significantly when cubic nonlinear damping is 
increased (Figure  6.10c) in the super‐criticality regime 
(R − ε > 0), but less so in the stable (R − ε < 0) and near‐
stable regimes (R − ε ≤ 0).

We now examine how ENSO amplitude changes in the 
presence of the three omitted processes, i.e., (i) the 
seasonal cycle modulation of the growth rate, (ii) the 
state‐dependent noise forcing, and (iii) the quadratic non-
linearity. By solving the ensemble mean equations of the 
second moment equations using the perturbation method, 
one may obtain approximate analytical solutions for how 
ENSO amplitude depends on the three parameters that 
measure these processes. We find only a weak dependence 
of ENSO amplitude on the strength of the annual modu-
lation of ENSO growth rate. The state‐dependent noise 
excitation results in a so‐called noised‐induced destabili-
zation of ENSO to enhance its variance (Jin et al., 2007). 
This is consistent with a weak increase of ENSO 
amplitude as parameter B increases. Similarly, quadratic 
nonlinearity also tends to have a weak impact on ENSO 
amplitude. Both the quadratic nonlinearity and state‐
dependent noise excitation are the two main sources for 
ENSO symmetry breaking, because they affect ENSO 
warm and cold phases differentially and thus generate 

ENSO asymmetry. This subject will be discussed briefly 
in subsection  6.4.3 and more comprehensively in 
chapter 7.

In summary, the key factors that control ENSO 
amplitude are (i) the linear growth rate, (ii) the amplitude 
of the stochastic forcing, and (iii) the amplitude of the 
cubic nonlinear damping. Other processes, including the 
seasonal modulation of the growth rate and symmetry 
breaking processes, are of secondary importance in 
controlling ENSO amplitude. This insight from simple 
dynamical theory may provide a useful framework for 
understanding ENSO amplitude changes in past, present, 
and future climates both in observational and proxy 
records, as well as in climate model simulations.

6.4.2. ENSO Phase Locking and Seasonal Modulation 
of Variance

El Niño and La Niña events tend to peak at the end of 
the calendar year, a phenomenon called ENSO phase 
locking. This phase locking is another fundamental 
ENSO property that is determined by its basic dynamics. 
It was realized early on that the seasonal cycle of  the cli-
mate background state can modulate ENSO and cause it 
to peak in boreal winter. Jin et al. (1996) showed that the 
seasonal cycle in the cold tongue region alone can give 
rise to ENSO’s phase locking to winter. Tziperman et al. 
(1997, 1998) and Neelin et al. (2000) further examined 
different physical processes contributing to ENSO phase 
locking. Later, the crucial role of  the seasonal migration 
of  the warm pool in shifting the equatorial wind response 
to the Southern Hemisphere and thereby accelerating El 
Niño termination and contributing to ENSO phase lock-
ing was recognized (Vecchi & Harrison, 2006; McGregor 
et al., 2012; Stuecker et al., 2013). Related, it was sug-
gested that the anomalous low‐level anticyclone in the 
western North Pacific (WNPAC) that develops in late 
fall to winter during El Niño conditions causes easterly 
wind anomalies on the equator that result in El Niño ter-
mination (Wang et  al., 1999). Stuecker et  al. (2013, 
2015a, 2015b) found that the seasonal‐paced southward 
migration of El Niño-associated westerly wind anomalies 
and the WNPAC are both part of  the so‐called ENSO 
combination mode (C‐mode), which is generated by the 
warm pool seasonal cycle modulation of  the atmospheric 
wind response to ENSO SSTA. As the ENSO C‐mode is 
responsible for the WNPAC genesis, it is fundamentally 
important to establish ENSO’s impacts on the East 
Asian monsoon system (Stuecker et al., 2015a, 2015b), 
which is addressed in more detail in chapter 14. Whether 
ENSO phase locking is predominantly controlled by the 
seasonal cycle in the warm pool or the cold tongue region 
is still an unsolved question; however, it is becoming 
clear that the modulation of  the ENSO growth rate is 
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Figure 6.10 (a) Probability distribution of temperature for the observations (gray bar) as well as the model with default, double, and half 
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fundamental for ENSO phase locking (An & Jin, 2010; 
Stein et al., 2014).

We use here the simple RO framework to discern the 
key factors that affect ENSO phase locking, which can be 
simply measured by the histogram of SSTA variance as a 
function of calendar month both for the observations 
and a typical solution from the RO model (Figure 6.10d). 
Another direct measure for capturing the ENSO peak 
phase is to examine the histogram of SSTA peak time as 
a function of calendar month (Figure 6.10e, f). These two 
methods both capture ENSO phase locking. For the 
observations, the peak times of both El Niño and La 
Niña tend to occur toward the end of the calendar year 
from November to January. The same ENSO phase lock-
ing is seen for the RO model simulation. In addition, how 
narrowly the histogram of SSTA peak time is distributed 
around the most preferred season is another important 
characteristic of  ENSO phase locking. In both observa-
tions and model simulations, the distribution of  the 
peak month is narrower for La Niña than El Niño, indi-
cating that the sharpness of  ENSO phase locking is 
asymmetric. In Chen and Jin (2020), the strength of 
ENSO phase locking is defined by the sharpness of  the 
ENSO phase histogram. A sharp distribution of the phase 
histogram indicates a strong phase locking, whereas a 
wide distribution indicates weak phase locking. Chen 
and Jin (2020) demonstrated that the preferred month of 
ENSO peaking time depends on the phase and strength 
of  the seasonal cycle modulation of  ENSO growth rate, 
and the strength of  ENSO phase locking mainly depends 
on the amplitude of  the seasonal cycle of  the growth 
rate, the linear growth rate regime, noise, and the linear 
frequency. Consequently, understanding how the seasonal 
cycles in the cold tongue and warm pool background 
states respectively control the phase and strength of 
seasonal cycle modulation of  the ENSO growth rate may 
help quantify the main contributing sources to ENSO 
phase locking.

6.4.3. ENSO Periodicity and Frequency Locking

ENSO periodicity appears to span a wide range, from 2 
to 7 years in the modern record, with some evidence 
pointing to the preference of QQ and QB periodicities 
(Jiang et al., 1995; Ghil et al., 2002). The current genera-
tion of climate models still suffers from large biases in the 
simulation of ENSO periodicity (Lu et al., 2018). What 
controls ENSO periodicity is a fundamental question and 
important for understanding its basic dynamics. Linear 
instability theory, as briefly reviewed in section 6.2, sug-
gests that the linear frequency of the leading ENSO mode 
varies sensitively from QQ to QB periodicity ranges, with 
modest changes from a relatively weaker to a stronger 
cold‐tongue basic state. Moreover, the linear eigen fre-

quency is not the sole factor that controls ENSO period-
icity. Frequency locking induced by the seasonal cycle (Jin 
et al., 1994; Tziperman et al., 1994) and nonlinear correc-
tions to ENSO periodicity (demonstrated analytically in 
the appendix of Jin, 1997a, and numerically in Eccles and 
Tziperman, 2004) can also affect the ENSO periodicity.

We first examine the frequency‐locking phenomenon 
using the symmetric version of the RO model (b = B = 0) 
in the supercritical regime (R − ε > 0) without noise forc-
ing. We vary the key parameters that control the linear 

period of RO ENSO 2
20

2
2

/
R

 and the 

strength of the annual modulation of the ENSO growth 
rate (Ra). The dominant frequency (main peak of the 
SSTA spectrum) is shown in Figure 6.11. The ENSO fre-
quency is discretized into frequency‐locked steps known 
as a Devil's staircase (Bak, 1986), as noted in Jin et al. 
(1994), and frequency‐locked regions that are called 
Arnold tongues (Arnol’d, 1961), as noted in Jin et  al. 
(1996) and Neelin et al. (1998) in two‐parameter space. 
The dominant ENSO periodicity remains constant over 
an interval and then changes in discrete jumps to the next 
frequency‐locked solution (e.g., 2, 3, 4, 5, 6, 7, and 8‐year 
periodicities and a series of rational fraction frequencies 
corresponding to non‐integer‐year periodicity). When Ra 
is increased, the width of each frequency step is increased, 
which indicates stronger frequency locking. ENSO linear 
instability and the strong seasonal modulation of this 
linear growth rate tend to generate a preference for QQ or 
QB ENSO periodicities if  the linear ENSO frequency is 
within the QQ or QB range.

The linear ENSO frequency, as captured by the 
imaginary part of the BWJ index, is the main factor that 
controls ENSO periodicity. Seasonal modulations of 
ENSO, nonlinear processes, and symmetry breaking only 
have moderate effects on ENSO periodicity. Noise forc-
ing not only can completely smooth out the the 4‐, 3‐ and 
2‐year periodicity from nonlinear frequency locking but 
also shift ENSO’s main periodicity toward high 
frequencies due to nonlinear effects (Figure 6.11b). It is 
difficult to explain the observed broad range of ENSO 
periodicity with a single linear frequency in the RO model 
framework. The observed broad spectrum of ENSO 
likely involves sensitive modulation of ENSO linear peri-
odicity by slow variations in the basic state; however, 
additional studies are needed to substantiate this 
conjecture.

6.4.4. ENSO Asymmetry

The causes of  the asymmetry between El Niño and 
La Niña in amplitude, duration, and spatial SST pat-
terns are key questions in ENSO research. While the RO 
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framework is not able to address the pattern asymmetry, the 
other asymmetries can be addressed qualitatively with the 
RO model (Levine & Jin, 2010), as shown in Figure 6.12a–
c. A number of processes have been identified to explain 
ENSO amplitude asymmetry (Jin et al., 2003; An & Jin, 
2004; Hayashi & Jin, 2017; Su et al., 2010; Vialard et al., 
2001; Kang & Kug, 2002; Liang et al., 2017), and we refer 
the reader to chapter  7 for a detailed review. Here, we 
summarize all the processes that generate amplitude 
asymmetry into two types of symmetry‐breaking 
processes: (i) nonlinear dynamical heating and (ii) ENSO 
state‐dependent deterministic coupled feedback, such as 
a threshold nonlinearity (Choi et  al., 2013; Takahashi 
et al., 2019) or ENSO state‐dependent stochastic excita-
tion. In our RO model framework, without loss of gener-
ality, they are related to the parameters b and B, 
respectively.

The SSTA skewness has been the main measure for 
ENSO asymmetry. Using the statistical moment approach 
of Jin et  al. (2007) and Levine and Jin (2010), we may 
obtain the approximated solution for the third moment 
(skewness) as a nearly linear function of the ENSO sym-
metry breaking processes, as measured by parameters b 
and B (not shown). Both the deterministic and stochastic 
symmetry‐breaking processes can generate ENSO asym-
metry (Figure  6.12d). Positive ENSO NDH and NDH 
from TIW can both increase the b parameter that in turn 
increases positive ENSO skewness. The activity of WWB/
MJO and TIW modulated by ENSO will increase the B 

parameter, and thus also ENSO skewness. If  b becomes 
negative, the effect on skewness also becomes negative. If  
La Niña can generate more easterly wind bursts, which 
may not be the case in nature (Hayashi & Watanabe, 
2016; Puy et al., 2015), we will then find a linear relation 
between negative B and ENSO skewness as well. The 
ENSO linear growth rate regime can also affect ENSO 
skewness: ENSO skewness decreases when the linear 
growth rate changes from a stable to an unstable regime. 
Nevertheless, the key insight learned from the RO model 
is that the ENSO symmetry breaking processes may all 
additively contribute to ENSO asymmetry as measured 
by its SSTA skewness.

6.4.5. Rectification of ENSO onto the Climatological 
Mean State

As synoptic weather systems transport heat, mois-
ture, and momentum that affect the background mean 
state in which the weather systems develop, there is also 
a similar ENSO–mean state interaction through var-
ious nonlinear processes. Simple nonlinear conceptual 
models with nonlinear advection (Jin, 1996; Sun, 1997; 
Jin, 1998; Timmermann & Jin, 2002; Timmermann 
et al., 2003; Liang et al., 2012), more complex models 
(Rodgers et  al., 2004), and NDH diagnosed from 
reanalysis data (Jin et al., 2003; An & Jin, 2004; Hayashi 
& Jin, 2017) all point toward the importance of  ENSO’s 
nonlinear rectification effect on the mean state. 
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Whether it be the baroclinic instability for weather sys-
tems or the Bjerknes instability for ENSO, linear 
growth can only cause perturbations to grow within a 
finite timeframe as nonlinearities in the conservation 
laws of  the governing equations (primarily through 
advective heat redistribution) will generate changes in 
the mean state to prevent unstable linear growth. A 
detailed discussion of  the specific processes that are 
important for ENSO–mean state interaction can be 
found in chapter  8. We here will use the simple RO 
model to gain insight into the relationship between 
ENSO’s rectification effect onto the mean background 
state and ENSO skewness through symmetry‐breaking 
nonlinearities.

The time‐mean of the SSTA in the RO model can be 
written as

 
R T bT cT B T0

2
2 3 0E E E E .

 
(6.39)

In the absence of symmetry‐breaking processes (b = B 
= 0), the time‐mean solution is zero and there is no mean 
state change even though the system is nonlinear. This is 
because the cubic nonlinearity in SST and the additive 
noise are symmetry‐preserving nonlinearities. However, 
once the symmetry is broken by either state‐dependent 
noise or a quadratic nonlinearity, both of which can be 
easily related to ubiquitous advective processes, all the 
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nonlinear terms give rise to nonzero contributions to a 
time‐mean NDH. Considering the fact that the time‐
mean SSTAs are small, the time mean of nonlinear terms 
and multiplicative noise terms in Eq. (6.39) are domi-

nated by bT cT B TE E E
2 3 . Furthermore, we can 

obtain a linear analytical solution to demonstrate that a 
positive ENSO‐like warming mean state is proportional 
to the skewness of ENSO T SE , as demonstrated in 
Figure  6.12d and 12e. The time‐mean temperature is 
linearly related to the ENSO skewness. This simple rela-
tion provides a tool for us to understand how ENSO may 
not only affect but also interact with the cold tongue 
mean state in the tropical Pacific and how biases in cli-
mate model simulations of ENSO may contribute to a 
climate mean state bias.

6.5. OUTLOOK

Modern observational networks, deployed just in the 
past few decades, have already captured a rich variety of 
ENSO spatial patterns and temporal evolutions, as 
described in chapters 3 and 4, among others. These short 
records have most likely not yet encapsulated the full 
spectrum of possible ENSO behaviors. Nevertheless, the 
complexity we have seen has gone far beyond what was 
perceived by pioneers such as Bjerknes and Wyrtki, 
among others. Significant advances have indeed been 
made in the theory of  ENSO complexity (e.g., JN93; 
Neelin et al., 1998; Fedorov & Philander, 2001; Jin et al., 
2006; Levine & Jin, 2010; Stuecker et al., 2013; Takahashi 
et al., 2019; Xie & Jin, 2018), in comprehensive simula-
tions of  ENSO by climate models (e.g., Guilyardi et al., 
2009; Wittenberg et al., 2014; Bayr et al., 2018), and in 
improving operational predictions of  ENSO events and 
their climatic and societal impacts (e.g., Luo et al., 2008; 
McPhaden et al., 2010; Stockdale et al., 2011; Barnston 
et al., 2012; L’Heureux et al., 2017). In spite of  the tre-
mendous successes achieved, state‐of‐the‐art climate 
models are yet to converge in their simulations of  basic 
ENSO characteristics such as its amplitude, period, 
phase locking, and warm‐cold phase asymmetry. Even 
more challenging is for models to simulate these charac-
teristics as a result of  capturing all key processes in the 
right balance, instead of as a result of  error compensa-
tions (Bellenger et al., 2014; Karamperidou et al., 2017; 
Bayr et al., 2018; chapter 9 in this book). An additional 
challenge for models is the simulation of ENSO diver-
sity, characterized by distinct spatial patterns, periodic-
ities, duration, and asymmetries of  the different ENSO 
“flavors.” These model biases have likely stalled the 
improvement of  the skill and reliability of  dynamical 
seasonal climate predictions that depend heavily on the 
representation of ENSO in climate models. Identifying 

the sources and understanding the underlying mecha-
nisms of stubborn climate model biases in the simulation 
of the mean state of  the equatorial Pacific and the repre-
sentation of ENSO thermodynamic and dynamic feed-
backs will be essential in developing the next generation 
of models for seamless climate forecasts and projections. 
Future research on ENSO complexity needs to continue 
to undertake a hierarchical modeling approach that 
includes simple conceptual models, models of  inter-
mediate complexity with consistent thermodynamic and 
dynamic coupled feedback processes and representation 
of multiscale interactions, and state‐of‐the‐art high‐reso-
lution general circulation models (chapter 9 in this book). 
This long‐tested hierarchical approach that combines 
theoretical, observational, model, and diagnostic frame-
works has the potential to lead to a new era of  advances 
in ENSO research, advances that will not only enhance 
our understanding of  the fundamental dynamics of  east-
ern and central Pacific ENSO events, their interactions, 
and their relation to tropical Pacific decadal variability, 
but also decipher the role of  multiscale processes 
involving WWBs, TIWs, and extratropical and pan‐basin 
precursors of  ENSO spatiotemporal complexity. These 
are essential steps to ultimately improve predictive skill 
for the entire tropical‐extratropical climate system.
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A BRIEF DESCRIPTION OF THE CZ MODEL

The CZ model is an anomaly model with a prescribed 
annually varying climate mean state. It comprises a 
simple quasi‐linear Gill-Matsuno atmospheric compo-
nent (Zebiak & Cane, 1987) that simulates the tropical 
wind response to ENSO‐associated SSTAs by considering 
condensational heating due to SSTA-induced moisture 
supply through evaporation and convective heating 
parameterized by moisture convergence by anomalous 
atmospheric flow:
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Definitions for all variables and parameters are listed in 
Table A. Here n denotes the sequence such that cumulus 
convection parameterized from moisture convergence 
can be solved iteratively.

The oceanic dynamical component includes a 1.5‐layer 
linear reduced gravity model that describes the upper‐
layer current and thermocline depth anomalies in 
response to wind stress anomalies:
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where u = H–1(H1u1+H2u2). The subscripts 1 and 2 indicate 
that within the upper layer ocean, there is an embedded 
mixed layer with fixed depth H1 (50 m) and an underlying 
subsurface layer with fixed depth H2 (100 m). The equations 
governing the velocity shear (us) between layer 1 and 2 are
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where us = u1 − u2.

The mixed‐layer SSTA is governed by the heat budget
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where T , u1 , and ws  are the mean SST, horizontal 
mixed‐layer ocean currents, and upwelling. Parameters 
and their values used in the model are listed in Table A.
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